资源类型

期刊论文 199

年份

2023 15

2022 8

2021 17

2020 26

2019 17

2018 16

2017 9

2016 6

2015 10

2014 5

2013 3

2012 8

2011 5

2010 5

2009 7

2008 8

2007 13

2006 3

2005 3

2004 1

展开 ︾

关键词

增材制造 4

发展趋势 3

残余应力 3

Inconel 718合金 2

力学性能 2

显微硬度 2

激光 2

激光加工 2

激光技术 2

选择性激光熔化 2

6016 合金 1

6016 铝合金 1

9 %~12 % Cr 钢 1

&prime 1

&gamma 1

Cu(Inx 1

DVD 1

EBSD 1

Ga1–x)Se2 1

展开 ︾

检索范围:

排序: 展示方式:

Cracking evolution behaviors of lightweight materials based on

Y. Luo, S. C. Wu, Y. N. Hu, Y. N. Fu

《机械工程前沿(英文)》 2018年 第13卷 第4期   页码 461-481 doi: 10.1007/s11465-018-0481-2

摘要:

Damage accumulation and failure behaviors are crucial concerns during the design and service of a critical component, leading researchers and engineers to thoroughly identifying the crack evolution. Third-generation synchrotron radiation X-ray computed microtomography can be used to detect the inner damage evolution of a large-density material or component. This paper provides a brief review of studying the crack initiation and propagation inside lightweight materials with advanced synchrotron three-dimensional (3D) X-ray imaging, such as aluminum materials. Various damage modes under both static and dynamic loading are elucidated for pure aluminum, aluminum alloy matrix, aluminum alloy metal matrix composite, and aluminum alloy welded joint. For aluminum alloy matrix, metallurgical defects (porosity, void, inclusion, precipitate, etc.) or artificial defects (notch, scratch, pit, etc.) strongly affect the crack initiation and propagation. For aluminum alloy metal matrix composites, the fracture occurs either from the particle debonding or voids at the particle/matrix interface, and the void evolution is closely related with fatigued cycles. For the hybrid laser welded aluminum alloy, fatigue cracks usually initiate from gas pores located at the surface or sub-surface and gradually propagate to a quarter ellipse or a typical semi-ellipse profile.

关键词: fatigue crack initiation and growth     fatigue damage mechanism     damage tolerance     defect characterization     laser welded aluminum alloys    

Parameter prediction in laser bending of aluminum alloy sheet

WANG Xuyue, XU Weixing, CHEN Hua, WANG Jinsong

《机械工程前沿(英文)》 2008年 第3卷 第3期   页码 293-298 doi: 10.1007/s11465-008-0046-x

摘要: Based on the basic platform of BP neural networks, a BP network model is established to predict the bending angle in the laser bending process of an aluminum alloy sheet (1–2 mm in thickness) and to optimize laser bending parameters for bending control. The sample experimental data is used to train the BP network. The nonlinear regularities of sample data are fitted through the trained BP network; the predicted results include laser bending angles and parameters. Experimental results indicate that the prediction allowance is controlled less than 5%–8% and can provide a theoretical and experimental basis for industry purpose.

关键词: control     industry purpose     nonlinear     network     aluminum    

Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: A review

Shoshan T. Abrahami, John M. M. de Kok, Herman Terryn, Johannes M. C. Mol

《化学科学与工程前沿(英文)》 2017年 第11卷 第3期   页码 465-482 doi: 10.1007/s11705-017-1641-3

摘要: For more than six decades, chromic acid anodizing (CAA) has been the central process in the surface pre-treatment of aluminum for adhesively bonded aircraft structures. Unfortunately, this electrolyte contains hexavalent chromium (Cr(VI)), a compound known for its toxicity and carcinogenic properties. To comply with the new strict international regulations, the Cr(VI)-era will soon have to come to an end. Anodizing aluminum in acid electrolytes produces a self-ordered porous oxide layer. Although different acids can be used to create this type of structure, the excellent adhesion and corrosion resistance that is currently achieved by the complete Cr(VI)-based process is not easily matched. This paper provides a critical overview and appraisal of proposed alternatives to CAA, including combinations of multiple anodizing steps, pre- and post anodizing treatments. The work is presented in terms of the modifications to the oxide properties, such as morphological features (e.g., pore size, barrier layer thickness) and surface chemistry, in order to evaluate the link between fundamental principles of adhesion and bond performance.

关键词: aluminum     Cr(VI)-free     surface pre-treatments     anodizing     adhesive bonding    

Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial

Biranchi PANDA,A. GARG,Zhang JIAN,Akbar HEIDARZADEH,Liang GAO

《机械工程前沿(英文)》 2016年 第11卷 第3期   页码 289-298 doi: 10.1007/s11465-016-0393-y

摘要:

Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

关键词: tensile properties     ultimate tensile strength     tensile elongation     friction stir welding     tool rotational speed     genetic programming     welding speed    

Laser vision sensing based on adaptive welding for aluminum alloy

CHEN Zhixiang, SONG Yonglun, ZHANG Jun, ZHANG Wanchun, JIANG Li, XIA Xuxin

《机械工程前沿(英文)》 2007年 第2卷 第2期   页码 218-223 doi: 10.1007/s11465-007-0038-2

摘要: A laser vision sensing based on the adaptive tungsten inert gas (TIG) welding system for large-scale aluminum alloy components was established to fit various weld groove conditions. A new type of laser vision sensor was used to precisely measure the weld groove. The joint geometry data, such as the bevel angle, the gap, the area, and the mismatch, etc., aided in assembling large-scale aerospace components before welding. They were also applied for automatic seam tracking, such as automatic torch transverse alignment and torch height adjustment in welding. An adaptive welding process was realized by automatically adjusting the wire feeding speed and the welding current according to the groove conditions. The process results in a good weld formation and high welding quality, which meet the requirements of related standards.

关键词: adjustment     adaptive tungsten     transverse alignment     large-scale aluminum     geometry    

高强度合金抗疲劳应用技术研究与发展

越振业

《中国工程科学》 2005年 第7卷 第3期   页码 90-94

摘要:

评述了超高强度钢、高强度A1合金和Ti合金表面完整性抗疲劳应用技术的研究和发展。高强度合金疲劳性能对应力集中敏感,不适当的加工工艺和切削热等造成的表面损伤和髙拉应力使其疲劳和应力腐蚀性能损失殆尽。先进的表面完整性加工尤其是表面改性可显著提高疲劳性能,如激光冲击使7475-T761拉-拉疲劳寿命提高约89%,7075-T6裂纹扩展速率降低到原来的1/1500;超声喷丸使超高强度钢低周疲劳强度提高约50%,Ti7A14Mo合金髙周疲劳强度提高约15%;表面超硬化可使Vasco X-2M齿轮钢接触疲劳寿命提高30~35倍等。

关键词: 高强度合金     表面完整性     激光冲击     表面超硬化    

我国航空铝合金产业发展战略研究

熊柏青,闫宏伟,张永安,李志辉,李锡武

《中国工程科学》 2023年 第25卷 第1期   页码 88-95 doi: 10.15302/J-SSCAE-2023.01.005

摘要:

航空铝合金作为航空器机体结构中最重要的结构材料之一,是我国国防科技工业发展、现代化经济体系建设、深入实施制造强国战略的重要物质基础。当前国际上已发展形成高强高韧铝合金、高比强/高比模铝合金、含钪高性能铝合金等三类主要航空铝合金体系,新一代高性能合金研究、高灵活度制备加工以及数据驱动的高效合金设计是主要的发展趋势。当前我国航空铝合金产业与国际发达国家总体“并跑”、部分“跟跑”,特别是在日趋复杂的国际国内宏观形势下,发展机遇与挑战并存,自主创新能力难以支撑航空铝合金材料创新引领、部分品种材料及装备“卡脖子”问题突出、产品国际市场竞争力不足、测试和应用数据积累及过程管控等基础体系能力短板尚存等问题更为突出。需从航空铝合金材料竞争力提升、新材料研发先行、高效上下游合作研发、新材料应用推广、材料指标和应用指标评价体系建立等方面发力,提升我国航空铝合金产业创新发展水平。

关键词: 航空;铝合金;高强高韧;高比模量    

alloying of CoCrFeMnNi high-entropy alloy from elemental feedstock toward high-throughput synthesis via laser

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0727-x

摘要: High-entropy alloys (HEAs) are considered alternatives to traditional structural materials because of their superior mechanical, physical, and chemical properties. However, alloy composition combinations are too numerous to explore. Finding a rapid synthesis method to accelerate the development of HEA bulks is imperative. Existing in situ synthesis methods based on additive manufacturing are insufficient for efficiently controlling the uniformity and accuracy of components. In this work, laser powder bed fusion (L-PBF) is adopted for the in situ synthesis of equiatomic CoCrFeMnNi HEA from elemental powder mixtures. High composition accuracy is achieved in parallel with ensuring internal density. The L-PBF-based process parameters are optimized; and two different methods, namely, a multi-melting process and homogenization heat treatment, are adopted to address the problem of incompletely melted Cr particles in the single-melted samples. X-ray diffraction indicates that HEA microstructure can be obtained from elemental powders via L-PBF. In the triple-melted samples, a strong crystallographic texture can be observed through electron backscatter diffraction, with a maximum polar density of 9.92 and a high ultimate tensile strength (UTS) of (735.3 ± 14.1) MPa. The homogenization heat-treated samples appear more like coarse equiaxed grains, with a UTS of (650.8 ± 16.1) MPa and an elongation of (40.2% ± 1.3%). Cellular substructures are also observed in the triple-melted samples, but not in the homogenization heat-treated samples. The differences in mechanical properties primarily originate from the changes in strengthening mechanism. The even and flat fractographic morphologies of the homogenization heat-treated samples represent a more uniform internal microstructure that is different from the complex morphologies of the triple-melted samples. Relative to the multi-melted samples, the homogenization heat-treated samples exhibit better processability, with a smaller composition deviation, i.e., ≤ 0.32 at.%. The two methods presented in this study are expected to have considerable potential for developing HEAs with high composition accuracy and composition flexibility.

关键词: laser powder bed fusion (L-PBF)     in situ alloying     high-entropy alloys     heat treatment     rapid synthesis    

汽车轻量化技术:铝/镁合金及其成型技术发展动态

付彭怀,彭立明,丁文江

《中国工程科学》 2018年 第20卷 第1期   页码 84-90 doi: 10.15302/J-SSCAE-2018.01.012

摘要:

为了推动我国汽车工业轻量化进程,文章从新材料、成型新技术、新应用三个方面对铝合金、镁合金两类轻金属材料的国内外研究动态进行了回顾,分析了两类轻金属材料在汽车工业应用的阻力,提出了我国汽车工业铝/镁合金可能的发展建议。

关键词: 汽车     轻量化     铝合金     镁合金     成型技术     发展动态    

Impact analysis of compressor rotor blades of an aircraft engine

Y B SUDHIR SASTRY, B G KIROS, F HAILU, P R BUDARAPU

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 505-514 doi: 10.1007/s11709-018-0493-3

摘要: Frequent failures due to foreign particle impacts are observed in compressor blades of the interceptor fighter MIG-23 aircraft engines in the Ethiopian air force, supplied by the Dejen Aviation Industry. In this paper, we made an attempt to identify the causes of failure and hence recommend the suitable materials to withstand the foreign particle impacts. Modal and stress analysis of one of the recently failed MIG-23 gas turbine compressor blades made up of the following Aluminum based alloys: 6061-T6, 7075-T6, and 2024-T4, has been performed, apart from the impact analysis of the rotor blades hit by a granite stone. The numerical results are correlated to the practical observations. Based on the modal, stress and impact analysis and the material properties of the three considered alloys, alloy 7075-T6 has been recommended as the blade material.

关键词: axial flow compressor     rotor and stator blades     aircraft engine     stress and impact analysis     aluminum alloys    

Investigation of fatigue resistance of fillet-welded tube connection details for sign support structures

Hyungjoo CHOI, Husam NAJM

《结构与土木工程前沿(英文)》 2020年 第14卷 第1期   页码 199-214 doi: 10.1007/s11709-019-0592-9

摘要: Stiffened and unstiffened fillet-welded tube-to-transverse plate connection details are widely used for mast-arm and base-plate connections for highway sign structures. However, due to repetitive wind loads, cyclic fatigue stresses are induced and they are the primary source of failure in welded connections at these locations. The resistance of fatigue critical details has been an on-going research topic because of limited experimental results and the variability in existing fatigue testing results. The main objective of this study is to evaluate fatigue resistance of fillet-welded tube connection details by utilizing the advanced fatigue tool in ANSYS Workbench platform. Finite Element (FE) models development and model validation using existing test data was presented. The resulting fatigue resistance from FE analysis was expressed in terms of fatigue life, fatigue damage, and fatigue safety factor to determine the fatigue performance of fillet-welded connections. Existing fatigue test data was grouped to perform a synthetic analysis and then analysis results were provided to determine input data and fatigue limit for the fatigue module. The local stress level at fatigue critical locations was evaluated using a static FE model for different number of stiffeners and boundary conditions. The results of this investigation provides fatigue resistance of fillet-welded connection details in the form of fatigue life, fatigue damage and safety factor for various connection parameters and structural conditions.

关键词: fatigue     weld connections     base plate     fillet welds    

Anodization of titanium alloys for orthopedic applications

Merve İzmir, Batur Ercan

《化学科学与工程前沿(英文)》 2019年 第13卷 第1期   页码 28-45 doi: 10.1007/s11705-018-1759-y

摘要:

In recent years, nanostructured oxide films on titanium alloy surfaces have gained significant interest due to their electrical, catalytic and biological properties. In literature, there is variety of different approaches to fabricate nanostructured oxide films. Among these methods, anodization technique, which allows fine-tuning of oxide film thickness, feature size, topography and chemistry, is one of the most popular approaches to fabricate nanostructured oxide films on titanium alloys, and it has been widely investigated for orthopedic applications. Briefly, anodization is the growth of a controlled oxide film on a metallic component attached to the anode of an electrochemical cell. This review provides an overview of the anodization technique to grow nanostructured oxide films on titanium and titanium alloys and summarizes the interactions between anodized titanium alloy surfaces with cells in terms of cellular adhesion, proliferation and differentiation. It will start with summarizing the mechanism of nanofeatured oxide fabrication on titanium alloys and then switch its focus on the latest findings for anodization of titanium alloys, including the use of fluoride free electrolytes and anodization of 3D titanium foams. The review will also highlight areas requiring further research to successfully translate anodized titanium alloys to clinics for orthopedic applications.

关键词: titanium alloys     anodization     biocompatibility     orthopedics    

Structure and performance of welding joint of Q235 steel welded by SHS welding

Junzhi HU, Sumei WANG, Xiaoli ZHAO, Shilin ZHU, Botao YU,

《机械工程前沿(英文)》 2010年 第5卷 第2期   页码 189-193 doi: 10.1007/s11465-010-0003-3

摘要: A self-propagating high-temperature synthesis (SHS) welding-pen that can weld steel workpiece from 6 to 10 mm is developed and welds the Q235 steel. The structure and properties of the welding joint are studied. The result indicates that this type of welding is melting and the fusion zone is clear. The tensile-strength of the welding joint is 283 MPa, flexural strength is 628 MPa, impact toughness is 46.43 J·cm, and the microhardness of the welding joint and fusion zone are 230 HV and 255.6€HV, respectively. The mircohardness of the fusion zone and the welding line are higher than that of the matrix.

关键词: self-propagating high-temperature synthesis (SHS) welding     welding line     structure and performance     melting    

Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI

《结构与土木工程前沿(英文)》 2012年 第6卷 第4期   页码 348-357 doi: 10.1007/s11709-012-0176-4

摘要: The objective of the present study is to analytically investigate temperature effects of an axial-type seismic damper made of shape memory alloys (SMAs) equipped in steel frames. Based on a modified multilinear one dimensional constitutive model of SMAs, two types of SMAs are employed, which have different stress plateau and different stress growth rate with temperature increase. Temperature effects of SMA dampers on seismic performance upgrading are discussed in three aspects: different environment temperatures; rapid loading rate induced heat generation and different SMA fractions. The analysis indicates that the effect of environment temperature should be considered for the SMA damper in steel frames. However, the rapid loading rate induced heat generation has little adverse effect.

关键词: damage control design     shape memory alloy     temperature effect    

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological

《机械工程前沿(英文)》 2023年 第18卷 第1期 doi: 10.1007/s11465-022-0720-4

摘要: Aerospace aluminum alloy is the most used structural material for rockets, aircraft, spacecraft, and space stations. The deterioration of surface integrity of dry machining and the insufficient heat transfer capacity of minimal quantity lubrication have become the bottleneck of lubrication and heat dissipation of aerospace aluminum alloy. However, the excellent thermal conductivity and tribological properties of nanofluids are expected to fill this gap. The traditional milling force models are mainly based on empirical models and finite element simulations, which are insufficient to guide industrial manufacturing. In this study, the milling force of the integral end milling cutter is deduced by force analysis of the milling cutter element and numerical simulation. The instantaneous milling force model of the integral end milling cutter is established under the condition of dry and nanofluid minimal quantity lubrication (NMQL) based on the dual mechanism of the shear effect on the rake face of the milling cutter and the plow cutting effect on the flank surface. A single factor experiment is designed to introduce NMQL and the milling feed factor into the instantaneous milling force coefficient. The average absolute errors in the prediction of milling forces for the NMQL are 13.3%, 2.3%, and 7.6% in the x-, y-, and z-direction, respectively. Compared with the milling forces obtained by dry milling, those by NMQL decrease by 21.4%, 17.7%, and 18.5% in the x-, y-, and z-direction, respectively.

关键词: milling     force     nanofluid minimum quantity lubrication     aerospace aluminum alloy     nano biological lubricant    

标题 作者 时间 类型 操作

Cracking evolution behaviors of lightweight materials based on

Y. Luo, S. C. Wu, Y. N. Hu, Y. N. Fu

期刊论文

Parameter prediction in laser bending of aluminum alloy sheet

WANG Xuyue, XU Weixing, CHEN Hua, WANG Jinsong

期刊论文

Towards Cr(VI)-free anodization of aluminum alloys for aerospace adhesive bonding applications: A review

Shoshan T. Abrahami, John M. M. de Kok, Herman Terryn, Johannes M. C. Mol

期刊论文

Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial

Biranchi PANDA,A. GARG,Zhang JIAN,Akbar HEIDARZADEH,Liang GAO

期刊论文

Laser vision sensing based on adaptive welding for aluminum alloy

CHEN Zhixiang, SONG Yonglun, ZHANG Jun, ZHANG Wanchun, JIANG Li, XIA Xuxin

期刊论文

高强度合金抗疲劳应用技术研究与发展

越振业

期刊论文

我国航空铝合金产业发展战略研究

熊柏青,闫宏伟,张永安,李志辉,李锡武

期刊论文

alloying of CoCrFeMnNi high-entropy alloy from elemental feedstock toward high-throughput synthesis via laser

期刊论文

汽车轻量化技术:铝/镁合金及其成型技术发展动态

付彭怀,彭立明,丁文江

期刊论文

Impact analysis of compressor rotor blades of an aircraft engine

Y B SUDHIR SASTRY, B G KIROS, F HAILU, P R BUDARAPU

期刊论文

Investigation of fatigue resistance of fillet-welded tube connection details for sign support structures

Hyungjoo CHOI, Husam NAJM

期刊论文

Anodization of titanium alloys for orthopedic applications

Merve İzmir, Batur Ercan

期刊论文

Structure and performance of welding joint of Q235 steel welded by SHS welding

Junzhi HU, Sumei WANG, Xiaoli ZHAO, Shilin ZHU, Botao YU,

期刊论文

Temperature effects of shape memory alloys (SMAs) in damage control design of steel portal frames

Xiaoqun LUO, Hanbin GE, Tsutomu USAMI

期刊论文

Mechanical behavior and semiempirical force model of aerospace aluminum alloy milling using nano biological

期刊论文